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Abstract: The usage of independent and simultaneous control of the state of light polarization
at different wavelengths can expand the capabilities of polarization methods for biomedical
application. Unfortunately, all known methods of polarization conversion cannot convert the state
of light polarization at different wavelengths independently. We propose a method and device
for independent and simultaneous control of the polarization state at two wavelengths. We have
theoretically proved the possibility of maintaining the phase shift at the first wavelength unchanged
while simultaneously and independently changing the phase shift at the second wavelength from
0 to 180 degrees. The capabilities of the method were for the first time demonstrated for radiation
with wavelengths λ= 632.8 nm and λ= 488 nm. At the wavelength λ= 632.8 nm, the phase shift
remained equal to 180° whereas at the wavelength λ= 488 nm, it varied in the range from 121°
to 136°.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Polarized light methods, various types of polarimetry, and polarized light imaging in biomedical
applications have sharply increased in recent years. They include developed laboratory techniques
for biochemical and biomedical studies [1,2], histological analysis of tissue samples [3,4], ex vivo
survey, and detection of diseases [5–9]. Polarization methods can be used for for determination
of the optical parameters of collagen solutions [10], quantitative detection of biomarkers [11], for
analysis of prostate adenoma and carcinoma diffuse tissues [12]. Mueller matrix polarimetry has
been used for studies of spatial heterogeneities in hydrogel remodeling by smooth muscle cells
[13]. Biosensors based on imaging ellipsometry have been used for antibody screening, hepatitis
B markers detection, cancer markers spectrum determination, virus recognition, to image and
quantify pathogenic viruses and disease biomarkers [14,15].

Independent and simultaneous control of the state of polarization at two wavelengths can
expand the functionality of polarization methods for biomedical application, reduce the time for
conducting research, and lead to the miniaturization of polarization devices operating at several
wavelengths.

Unfortunately, all known methods of polarization conversion cannot convert the state of light
polarization at different wavelengths independently. Optical systems that linearly transform
polarization of light may be described in the formalism of 2 × 2 complex Jones matrices [16,17].
According to the generalized polarization matrix equivalence theorem [18], any polarization
system comprising any number of polarization elements can be presented by only four optical
elements. All those elements generally depend on the wavelength of light λ. The most prominent
factor is the dependence of phase retardation Γ on the wavelength, namely, Γ = ∆nd/λ, here ∆n
is the material birefringence, and d is the thickness of the retardation plate. That is why if an
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optical system transforms the polarization of light at one wavelength in a particular way, the
change of polarization for another wavelength would be set and would depend on the values of
the system parameters for that second wavelength. Thus, polarization states for two different
wavelengths would become entangled.

The use of broadband (achromatic) polarization devices has been proposed to overcome this
principal limitation. It turns out that combinations of half-wave and quarter-wave plates - if their
main axes are oriented at particular angles - can equally transform the states of polarization in a
wide range of wavelengths [19,20]. Increasing the number of quarter-wave and half-wave plates
allows one to create broadband achromatic polarization systems with tunable phase retardation
[21–24]. It is also possible to achieve broadband achromatic polarization devices using modern
polymer and liquid crystal cells [25,26]. Combining phase plates with almost arbitrary phase
retardations allows one to create polarization systems tunable in a wide wavelength range [27–31].
The system of LC spatial light modulators and a deformable mirror have been proposed to
eliminate parasitic polarization inhomogeneities in the beam cross-section [32].

Thus, while much attention has been devoted to the development of various broadband
polarization devices, the problem of independent and simultaneous conversion of the polarization
of two-wave radiation has not been raised or properly studied. Yet, few separate issues on the
subject have been experimentally addressed [33–35].

We propose a new method and device based on the use of several birefringent plates for
simultaneous and independent polarization conversion of two beams with different wavelengths.
The main principle of the method is based on the idea that several free parameters determine
and govern the properties of composite polarization systems. It turns out that a set of four phase
plates can make up a polarization system that simultaneously and independently transforms states
of polarization for two wavelengths.

2. Theory of polarization systems

A polarization device based on a system of four phase plates is considered in our study (Fig. 1).
Let the effective phase retardation of the system at the first wavelength λ1 to be Γ(1)1,2,3,4 = π. Let
us find out if this is possible with the predetermined Γ(2)1,2,3,4 at the second wavelength λ2. We will
use the upper index (1) to denote all values related to the first wavelength and the upper index (2)
to denote all values related to the second wavelength.

Fig. 1. Polarisation system consisted of four phase plates with the same retardation.

We chose the coordinate system so that the direction of light propagation coincides with the
z-axis. The x-axis and the y-axis coincide with the direction of the slow axis and the fast axis of
the first plate, respectively. The values φ2, φ3, and φ4 denote the angles between the x-axis and
the slow axes of the second, third, and fourth plates, respectively. The Jones matrices formalism
[17] is used to analyze the polarization characteristics of the system. We will define the range of
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changes of system parameters, under which the condition Γ(1)1,2,3,4 = π is satisfied, and investigate
the dependency of the value Γ(2)1,2,3,4 on the system parameters, when they are changed in this
range.

We should use the modified Jones theorem [30] of the polarization systems equivalence to
describe the properties of a four-component system. This theorem states that any polarization
system consisting of two phase-retardation plates can be presented as a system of one effective
phase-retardation plate, and a rotator of the plane of polarization (an element with optical activity).
First, we consider the system [28] that consists of two phase-retardation plates whose slow axes
are oriented at an angle φ. Such a two-component polarization system has the following Jones
matrix:

W(Γ1, Γ2, φ) = R(−φ) · T(Γ2) · R(φ) · T(Γ1), (1)

where

T(Γi) =
⎛⎜⎝

1 0

0 exp (iΓi)

⎞⎟⎠
is the polarization matrix of the phase retardation plate in the coordinate system associated with
its eigen axes; Γ1 and Γ2 are phase retardations of the first and second plates, respectively. The
rotation matrix R(φ) are used for transit from one coordinate system to another:

R(φ) =
⎛⎜⎝

cos φ sin φ

− sin φ cos φ
⎞⎟⎠ . (2)

The theorem of the equivalence [30] allows the matrix W(Γ1, Γ2, φ) to be equated to the matrix
of the system consisting of one effective phase-retardation plate, and a rotator of the plane of
polarization V(ε, θ, Γ1,2):

W(Γ1, Γ2, φ) = V(ε, θ, Γ1,2). (3)

Here V(θ, ε, Γ1,2) = R(−θ)·R(−ε)·T(Γ1,2)·R(ε)where R(±ε), R(−θ) are the rotation matrices
defines like Eq. (2) , θ is an angle of the optical activity, Γ1,2 is the effective phase retardation
and ε is the angle between the eigen axis of the effective phase-retardation plate and the x-axis of
the coordinate system. By solving Eq. (3), we can find the values of these variables

Γ1,2 = acos (cos Γ1 cos Γ2 − cos 2φ sin Γ1 sin Γ2) ,

ε =
1
2

atan
[︃

sin 2φ
cot Γ2 sin Γ1 + cos 2φ cos Γ1

]︃
,

θ = atan
[︃

sin 2φ
cot(Γ1/2) cot(Γ2/2) − cos 2φ

]︃
.

(4)

Further, we will consider the polarization properties of the four-component system for the first
wavelength (Fig. 1). Let us assume for simplicity that the values of the phase retardations of all
four plates are equal to each other and are equal to Γ(1) for the first wavelength and are equal to
Γ(2) for the second wavelength. Thus, we can write the Jones matrix of the system as:

W(1)(Γ(1), φ2, φ3, φ4) =

= R(−φ4) · T(Γ(1)) · R(φ4) · R(−φ3) · T(Γ(1)) · R(φ3) · R(−φ2) · T(Γ(1)) · R(φ2) · T(Γ(1)),
(5)

where R(φi) is the rotation matrix (i = 2, 3, 4), and T(Γ(1)) is the matrix of the single phase-
retardation plate.
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Consistently applying the above equivalence theorem to the Eq. (5), it is possible to bring the
polarization matrix of the system to a more convenient form for analysis. Taking into account the
property of the rotation matrices R(ψ1) · R(ψ2) = R(ψ1 + ψ2), we can rewrite Eq. (5) as

W(1)(Γ(1), φ2, φ3, φ4) =

= R(−φ4) · T(Γ(1)) · R(φ4−φ3) · T(Γ(1)) · R(φ3) · R(θ
(1)
1,2−ε

(1)
1,2) · T(Γ(1)1,2) · R(ε

(1)
1,2) =

= R(−φ4) · T(Γ(1)) · R(φ4+θ
(1)
1,2−ε

(1)
1,2) · R(−γ

(1)
1,2) · T(Γ(1)) · R(γ

(1)
1,2) · T(Γ(1)1,2) · R(ε

(1)
1,2) =

= R(−φ4) · T(Γ(1)) · R(φ4+θ
(1)
1,2−ε

(1)
1,2) · R(θ

(1)
1,2,3−ε

(1)
1,2,3) · T(Γ(1)1,2,3) · R(ε

(1)
1,2,3) · R(ε

(1)
1,2) =

= R(−φ4) · T(Γ(1)) · R(β(1)) · T(Γ(1)1,2,3) · R(ε
(1)
1,2,3 + ε

(1)
1,2).

(6)

Here, the ε with indices denote the angles between the slow axes of the effective retardation
plates and the x-axis. The variables θ with indices indicate the azimuths of the plane of polarization
rotation by the effective rotator. Γ(1) with indices denote the effective phase retardations of
the corresponding polarization systems. The subscripts 1,2 and 1,2,3 indicate the parameters
related to the polarization systems consisting of the first and second or the first, second and third
plates. The variable γ(1) = φ3 + θ

(1)
1,2 − ε

(1)
1,2 denotes the angle between the effective slow axis

of the composite polarization system 1,2 and the slow axis of the third retardation plate, thus
taking into account the presence of the effective optical activity θ1,2 for the system 1,2; while
β(1) = φ4 + θ

(1)
1,2 + θ

(1)
1,2,3 − ε

(1)
1,2 − ε

(1)
1,2,3 has the same definition only for the system 1,2,3 and the

fourth plate.
The variables in Eq. (6) are related to each other in the same way as in Eq. (4):

Γ
(1)
1,2 = acos

(︂
cos2
Γ
(1) − cos 2φ2sin2

Γ
(1)
)︂

, (7)

ε
(1)
1,2 =

1
2

atan
[︃

sin 2φ2

(1 + cos 2φ2) cos Γ(1)

]︃
, (8)

θ
(1)
1,2 = atan

[︃
sin 2φ2

cot2(Γ(1)/2) − cos 2φ2

]︃
, (9)

Γ
(1)
1,2,3 = acos

(︂
cos Γ(1) cos Γ(1)1,2 − cos 2γ(1) sin Γ(1) sin Γ(1)1,2

)︂
, (10)

ε
(1)
1,2,3 =

1
2

atan ⎛⎜⎝ sin 2γ(1)

cot Γ(1) sin Γ(1)1,2 + cos 2γ(1) cos Γ(1)1,2

⎞⎟⎠ , (11)

θ
(1)
1,2,3 = atan

⎡⎢⎢⎢⎢⎣
sin 2γ(1)

cot(Γ(1)1,2/2) cot(Γ(1)/2) − cos 2γ(1)

⎤⎥⎥⎥⎥⎦ . (12)

Further, it is necessary to find the values of the system parameters when the system has phase
retardation Γ(1)1,2,3,4 = π at the first wavelength. For this purpose, we note that according to the
last line of Eq. (6), the polarization system under investigation is equivalent to the consecutively
placed effective phase-retardation plate with Γ(1)1,2,3 and the fourth phase-retardation plate with
Γ(1). Such polarization system can have the effective phase retardation π only if the angle β(1)
between the slow axes of these plates is zero, and the sum of their phase retardations is equal to
π. It means that the condition Γ(1)1,2,3,4 = π is satisfied for those values of the system parameters
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for which the following equalities are valid:

φ4 = ε
(1)
1,2 + ε

(1)
1,2,3 − θ

(1)
1,2 − θ

(1)
1,2,3, (13)

Γ
(1)
1,2,3 + Γ

(1) = π. (14)

From Eq. (10) and Eq. (14) we obtain the following equation:

− cos Γ(1) = cos Γ(1) cos Γ(1)1,2 − cos 2γ(1) sin Γ(1) sin Γ(1)1,2. (15)

From Eq. (15), it is possible to obtain an expression for the value of the angle γ(1):

γ(1) =
1
2

acos ⎛⎜⎝cot Γ(1)
1 + cos Γ(1)1,2

sin Γ(1)1,2

⎞⎟⎠ . (16)

Since according to Eqs. (7) the values Γ(1)1,2 depend only on the angle φ2 for the fixed Γ(1) then
γ(1) is a function of φ2. The angle φ3 can also be expressed in terms of γ(1), ε(1)1,2, θ(1)1,2 and it is
also a function of φ2:

φ3 = γ
(1) + ε

(1)
1,2 − θ

(1)
1,2. (17)

The angle φ4 is expressed in Eq. (13), and it is also a function of φ2. Thus, if the four-component
system has phase shift Γ(1)1,2,3,4 = π, then all the other system parameters (φ3 and φ4) are uniquely
determined for the given parameter φ2. It means that there is only one independent free parameter
(the angle φ2) for the system.

Now we investigate how the effective phase retardation of the four-component system at the
second wavelength changes when the parameters of the system are varied. Since the polarization
properties of the system under investigation are uniquely determined by the angles φ2, φ3, φ4 and
phase retardation of its components for the chosen wavelength, so the effective phase retardation
Γ
(2)
1,2,3,4 of the system for the second wavelength is a function of the angle φ2 and quantities Γ(1)

and Γ(2), when the system is adjusted according to the condition Γ(1)1,2,3,4 = π.
Equation (5) remains valid for the second wavelength when replacing Γ(1) with Γ(2). Then

the values of the angles φ3 and φ4 are determined from Eq. (13), Eq. (17) as a function of φ2
and Γ(1). Then, the modified equivalence theorem Eq. (3) is applied to the resulting polarization
matrix, taking into account the indicated substitutions. Having done these calculations, we get
the following equation from Eq. (6):

W(2)(φ2, Γ(1), Γ(2)) =

= R(θ
(2)
1,2 + θ

(2)
1,2,3 − ε

(2)
1,2 − ε

(2)
1,2,3) · R(−β(2)) · T(Γ(2)) · R(β(2)) · T(Γ(2)1,2,3) · R(ε

(2)
1,2 + ε

(2)
1,2,3) =

= R(θ
(2)
1,2 + θ

(2)
1,2,3 + θ

(2)
1,2,3,4 − ε

(2)
1,2 − ε

(2)
1,2,3 − ε

(2)
1,2,3,4) · T(Γ(2)1,2,3,4) · R(ε

(2)
1,2 + ε

(2)
1,2,3 + ε

(2)
1,2,3,4).

(18)
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The expressions for variables with the superscript (2) in Eq. (18) are essentially the same as
Eqs. (7) –(12) for the first wavelength only substituting superscripts (1) for (2). Here

Γ
(2)
1,2 = acos

(︁
cos2Γ(2) − cos 2φ2sin2Γ(2)

)︁
,

ε
(2)
1,2 =

1
2atan

[︂
sin 2ϕ2

(1+cos 2ϕ2) cos Γ(2)

]︂
,

θ
(2)
1,2 = atan

[︂
sin 2ϕ2

cot2(Γ(2)/2)−cos 2ϕ2

]︂
,

γ(2) = φ3 − ε
(2)
1,2 + θ

(2)
1,2,

Γ
(2)
1,2,3 = acos

(︂
cos Γ(2) cos Γ(2)1,2 − cos 2γ(2) sin Γ(2) sin Γ(2)1,2

)︂
,

ε
(2)
1,2,3 =

1
2atan

(︃
sin 2γ(2)

cot Γ(2) sin Γ(2)1,2+cos 2γ(2) cos Γ(2)1,2

)︃
,

θ
(2)
1,2,3 = atan

[︃
sin 2γ(2)

cot(Γ(2)1,2/2) cot(Γ(2)/2)−cos 2γ(2)

]︃
.

β(2) = φ4 − ε
(2)
1,2 − ε

(2)
1,2,3 + θ

(2)
1,2 + θ

(2)
1,2,3,

Γ
(2)
1,2,3,4 = acos

(︂
cos Γ(2)1,2,3 cos Γ(2) − cos 2β(2) sin Γ(2)1,2,3 sin Γ(2)

)︂
,

ε
(2)
1,2,3,4 =

1
2atan

(︃
sin 2β(2)

cot Γ(2) sin Γ(2)1,2,3+cos 2β(2) cos Γ(2)1,2,3

)︃
,

θ
(2)
1,2,3,4 = atan

[︃
sin 2β(2)

cot(Γ(2)1,2,3/2) cot(Γ(2)/2)−cos 2β(2)

]︃
.

(19)

Thus, we have obtained all the relationships necessary to determine the conditions under which
an adjustable polarization system consisting of four phase-retardation plates has the effective
phase retardation π for the first wavelength and any requiring phase retardation Γ(2)1,2,3,4 for the
second wavelength by varying independent free parameter (the angle φ2).

Figure 2 shows the dependence of the effective phase retardation Γ(2)1,2,3,4 on the adjusting angle
φ2 for values Γ(1) = 55◦, Γ(2) = 125◦, provided that the system has Γ(1)1,2,3,4 = π. It can be seen
from Fig. 2 that when the adjusting angle φ2 is changed, the effective phase retardation Γ(2)1,2,3,4
continuously varies in the range from almost 0 to 180◦.

Fig. 2. The dependence of the effective phase retardation Γ(2)1,2,3,4 on the adjusting angle φ2

at the values Γ(1) = 55◦, Γ(2) = 125◦.
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3. Experimental results

The described approach was used to study experimentally a system consisting of four phase
retardation plates with equal phase retardation. The phase retardation of the birefringent plates
was chosen to be Γ(1) = 52.8◦ at the first wavelength λ1 = 632.8 nm and Γ(2) = 72.9◦ at the
second wavelength λ2 = 488 nm. The tuning of the system to have a certain effective phase
retardation at the second wavelength was performed by changing the angle φ2 (the free parameter).
The phase retardation of the system at the second wavelength was measured and calculated,
assuming the system has phase shift π at the first wavelength.

The experimental setup is shown in Fig. 3. A helium-neon laser (the wavelength λ1 = 632.8
nm) and an argon ion laser (λ1 = 488 nm) were used as light sources. Both lasers were generated
in the fundamental transverse mode. The radiation of the helium-neon laser had a sufficiently
high degree of linear polarization. The intensity-related ellipticity of its polarization eI was 10−4.
The argon laser radiation was almost completely depolarized. The polarizer P1 (Glan prism)
was used to produce linearly polarized light at the wavelength λ2 = 488 nm. A quarter wave
plate converted the linearly polarized radiation at both wavelengths into circularly polarized.
By turning polarizer P2 (Glan prism), it was possible to set the required azimuth of the plane
of polarization of linearly polarized light at the input of the four-element polarization system
under investigation. An analyzer A was installed after the polarization system. The polarization
system consisted of four identical mica waveplates. The retardations of the waveplates at both
wavelengths (Γ(1) = 52.8◦ and Γ(2) = 72.9◦) were measured using our method described in [36].
Using the values of the parameters Γ(1) and Γ(2), we calculated the values of the angles φ2, φ3
and φ4 and installed the retardation plates.

Fig. 3. Experimental setup.

At first, we proved that the polarization system has the property of a half-wave plate at the first
wavelength λ1 = 632.8 nm for the different sets of the angles φ2, φ3 and φ4. We determined the
azimuth of the effective eigen axes ε(1)1,2,3,4 and the angle of the effective optical activity of such
system θ

(1)
1,2,3,4. The quality and azimuth of the linearly polarized light at the output of the system

were checked for the different orientations of the input linear polarization. We had high-quality
linear polarization at the system output; the intensity-related ellipticity of polarization eI did not
exceed ∼ 10−4. The azimuth of the linearly polarized light changed in the same way as after an
ordinary half-wave plate if we take into account additional optical activity θ(1)1,2,3,4.

The dependence of the azimuth of one of the eigen axes ε(1)1,2,3,4 on the adjusting angle φ2

is shown in Fig. 4. Fig. 4 shows that the value ε(1)1,2,3,4 depends on the adjusting angle φ2 and
experimentally measured values of ε(1)1,2,3,4 are in good agreement with the calculated values.

Three polarization parameters of the polarization system, namely, the direction of one of
the effective eigen axes ε(2)1,2,3,4, effective optical activity θ(2)1,2,3,4 and effective phase retardation
Γ
(2)
1,2,3,4 at wavelength λ2 = 488 nm were measured for the different sets of angles φ2, φ3 and
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Fig. 4. The dependence of the azimuth ε(1)1,2,3,4 of one of the polarization system axes on the
adjusting angle φ2 at the wavelength λ1.

φ4. The effective phase retardation Γ(2)1,2,3,4 of the system under investigation was determined by
measuring the maximum ellipticity, which the system provides. To determine the ellipticity eI we
rotated the analyzer and measured the maximum and minimum light intensity passed through the
polarization system. The value of eI was estimated as the ratio of the minimum and maximum
measured intensity. To exclude the influence of the lasers output power fluctuations, the output
intensity was determined as the ratio of signals from photodiodes D1 and D2.

Figure 5 shows the dependence of the polarization system effective phase retardation Γ(2)1,2,3,4 on
the adjusting angle φ2. The obtained experimental results are in good agreement with theoretical
data. The observed deviation of experimental results from the calculated ones could be due to
neglecting the linear amplitude anisotropy in the theoretical calculations.

Fig. 5. The dependence of the effective phase retardation Γ(2)1,2,3,4 of the polarization system
on the adjusting angle φ2 at wavelength λ2.

Thus, the experimental results demonstrate the validity of a new method for independent and
simultaneous polarization control of two light beams with different wavelengths. It should be
stressed that achieving the effective phase retardation at the second wavelength up to Γ(2)1,2,3,4 = 180◦
is possible using LC-cell as a retardation plate as was theoretically shown in our paper [37].
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4. Conclusions

We have proposed a composite polarization system for independent and simultaneous polarization
control of two light beams with different wavelengths. It was shown that the polarization system
should consist of four phase plates with the same birefringence but with different axes orientations
relative to each other. We were successful in demonstrating the independent and simultaneous
polarization control at wavelength λ1 = 632.8 nm and λ2 = 488 nm keeping the retardation at
the first wavelength Γ(1)1,2,3,4 = 180◦ unchanged while the retardation at the second wavelength
changed in the range from Γ(2)1,2,3,4 = 121◦ to Γ(2)1,2,3,4 = 136◦. To extend this range, it is necessary
to use the elements with variable phase shift (LC-cell) as the components of the system.

In many biomedical applications of optical scanning and tomography, the use of multiple
wavelengths is required to increase sensitivity and accuracy of measurements. On the other hand,
the great advantage of proposed approach here is clear possibility for miniaturization of desired
polarization systems. For example, the use of dual-wavelength optical polarimetry is considered
extensively for real-time, non-invasive in-vivo glucose sensing [38–40]. Implementation of our
approach for designing polarization systems may help to develop these table-top experimental
prototypes into real palm-sized devices for clinical use.
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